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GYPSY FIELD PROJECT 
IN RESERVOIR CHARACTERIZATION 

Objectives 
The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a 
focus for developing and testing reservoir characterization methods that are targeted at improved 

The Gypsy Field laboratory, as described by Doyle, O’Meara, and Witterholt (1992), consists of 
coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible 
in a production operation. Data from these sites entail geological descriptions, core measurements, 
well logs, vertical seismic surveys, a 3D seismic survey, crosswell seismic surveys, and pressure 
transient well tests. 

The overall project consists of four interdisciplinary sub-projects which are closely interlinked: 

. recovery of conventional oil. 

1. Modeling depositional environments. 

2. Upscaling. 

3. Sweep efficiency. 

4. Tracer testing. 

The first of these aims at irnprokAiig our ability to model compl;x depositional environments which 
trap movable oil. The second entails testing the usefulness of current methods for upscaling from 
complex geological models to models which are more tractable for standard reservoir simulators. 
The third investigates the usefulness of numerical techniques for identifying unswept oil through 
rapid calculation of sweep efficiency in large reservoir models. The fourth explores what can be 
learned from tracer tests in complex depositional environments, particularly those which are fluvial 
dominated. 

Summary of Technical Progress 
During this quarter, the main activities involved the “Modeling depositional environments” 
sub-project, for which the progress is reported below. 



I "  I 

1. Introduction. We consider a problem to estimate the permeability from core mea- 
surements and transient pressure data. Of particular interest is the dependence of the 
estimated permeability on pressure measurements. In this report we establish mathemati- 
cal conditions under the estimated permeability is determined as a function of the pressure 
data that varies smoothly with respect to small changes in that data. This investigation is a 
key step in the study of the resolution properties of model-based estimation test problems. 

2. The Semidiscrete Formulation of the Parabolic Problem. In this section we 
present the formulation for the parabolic models. To fix ideas, let R be an open bounded 
domain in R" with a Lipschitz boundary BR. Let H = L2(Q)  and V = H1(R). Let 

f f L2(0 ,T ;H)  and a E Q c L"(S1). 

We assume that there is a positive constant v such that 

a(=) 2 v almost everywhere in R. 

Consider the initial boundary value problem given by 

BU -- V (aVu) = f in Rx(0,T) 
(2.1) at 

- i3u = O on BR, 
an 

and 

with f f L 2 ( 0 , T ; H )  and a f Q C L"(Q). For ease we will take uo = 0. It is well known 
[23 that there exists a unique solution u E L2(0,T;V).  Furthermore, if a, + a in Q 
for a, 2 v, then the sequence of associated solutions u(a,) converges weakly to u(a)  in 
L*(O,T; H), [Z]. In formulating a ROLS estimation problem, we suppose that Q is a Hilbert 
space that compactly imbeds into L" (C?). 

We study systems of initial value problems obtained from the finite element approx- 
imations [Z]. Suppose that { B i ) z l  and {bi}gl are linearly independent functions in U 
and Q, respectively. Express u and a as sums 

N 
u p )  = c;(t)Bt 

a= 1 

and 
M 

u = ajbj, 
j =  1 
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respectively. Given the coefficient a ,  we seek u = uta) such that 

(2.4) 

for i = 1, ..., N .  Introducing the representation of a as the above sum and collecting terms, 
we define component stiffness matrices as the N x N matrices G(k)  with entries 

for b = 1, ..., M and 

Goij = J ,  BiBjdt. 
Define the column N-vector valued function t I+ F ( t )  with entries 

We also write c = c(a) when it is desirable to emphasize the dependence of c on a. The 
stiffness matrix is given as the Linear combination of the component matrices 

M 
G = G(a) = x d k G ( k ) .  

k= 1 

and the discrete version of the boundary d u e  problem (2.4) is thus given by the equation 

d 
(2 .5 )  d t  Go-c + G(a)c = F 

with initial condition 

(2.6) c(0)  = 0 
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Setting 

The solution to (2.5) may be represented by 

S(a ) ( t )  = exp[GF1G(a)t] 

~ ( t )  = I' S(T - t ) G i l F ( ~ ) d ~ .  

Remark 2.1. The elliptic case is given by 

G(a)c = F 

where the vectors c and F no longer depend on t. 

Suppose there are given continuous linear functionals on V and {en}:& 
on Q to serve as observation functionals, [3]. From these functionals we construct the 
operators 

and C1 : Q i-) 21 = RN1 as 

Co : L2(0 ,  2'; V) I+ 20 = L2(0,T;  RNo) 

and 

respectively. 

The minimization problem is formulated by introducing a fit-to-data functional 

. 
[72  I D2a l2 + 71 1 'Oa 12]dz 

+ I ,  
where 71, and 7 2  2 0. The functiond J ( a )  is to be minimized over an admissible set 
Qad C Q .  For example, Q a d  may be taken to be 

(2.8) Q a d  = { a €  H 2 ( s l ) :  U ?  V >  O}. 
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The finite dimensional formulation of the fit-to-data functional is obtained by intro- 
ducing the No x N matrix 9 

@ij =< At, B, > 
for i = 1, ..., No and j = I, ..., N ,  the M x M matrix 

for i, j = I, ..., M ,  the Nl x M matrix 

for i = 1, ..., Nl and j = 1, ..., M, the No column vector 

the N1 column vector 

K =  

Let 
@2 = 9'9 and 4'2 = 4'*4' 

where * denotes transposition. The functional J ( . )  may thus be viewed as being defined 
on RM and is expressed as 

T 

(2.9) J(a) = [c*%c - 22'9~ + z*z]df + a*(H + 4'z)a - 2K'qa + K*K 

where a E Qz and Q,"d serves as an appropriate admissible set in RM. 

To study the effect of perturbations of the data on interior optimal estimators, our 
starting point is the system of equations characterizing optimal estimators. Note the 
Frechet derivative of c at a with increment a', Dc(a)a', satisfies the equation 

d 
d f  

Go-[[Dc(a)a'] + G[Dc(a)a'] = -G(a')c(a). (2.10) 

with initial condition 
[Dc(a)a'](O) = O 
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r t  
so that 

[Dc(a)a'](t) = - 1 S(T - t)G,'G(a')c(a)(T)&. 
0 

Defining the column N-vectors 

t 

&'(a)(t) = 1 S(7 - t)G{'G(')c(a)(r)dr 

and the N x M matrix 

we may write 
[ Dc( a) a'] ( t  ) = -Do (a) ( t )a'. 

It follows then that 

(2.11) -DJ(a)a' = 

Introducing the vector x = n(a,z) as the solution of the system, 

I' 1 
2 (@2c(a) - @*z)* [Dc(a)a'] dt + ((H + 9 2 ) a  - !P* K)' a' 

d 
dt 

--G(O)n + G(a)x = @2c(a) - @'z, 

n(T)  = 0, 

(2.12) 

we see that 

iT(@2c(a)  - @*z)*G[Dc(a)a'] d t  = - n*G(a')c(a)dt 1' 
holds. The solution of (2.12) may be represented by the formula 

T 
x(a, z ) ( t )  = - S(t - 7)Gi1(@2c(a)(7) - @ * z ( T ) ) ~ T .  

Define the column M-vector X = X(a,z) with entries, 

(2.13) 
T 

k'k = 1 x(a,z)*G(')c(a)dt. 

The derivative of J may now be expressed by the formula 

1 
-DJ(a)a' = [ (H+62)a - Q'K -X]*a' 
2 

(2.14). 

Thus, the optimality conditions statisfied by an interior solution are given by the following. 
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Proposition 2.2. If a is an interior local minimum for the estimation problem, then a 
satisfies the system 

(2.15) (i) 

(2.15) (ii) 

d 
Gozc(a)  + Gc(a) = F 

c(a)(O) = 0 

d 
d t  -Go-r(a,z) + G;lr(a, z) = Pizc(a) - @*z 

;lr(a,z)(T) = 0 

(2.15) (iii) (H+ 'tE2)a - 9'K - K(a,z)  = 0. 

The optimality system in (2.15) establishes a relationship between the data vectors z 
and K and an optimal estimator a. We next obtain conditions such that the relation given 
by the optimality conditions of Proposition 2.2 determines a function z H a(.) from RNo 
into R'. To this end, define the function 

(2.16) F(a,z ,K) = (H + 62)a - 'tE'K - X(a,z). 

For the time being we are interested only in the dependence of a on 2. Hence, we view K 
as a constant vector and set 

F(a,z) = F(a,z ,K).  

Of course, existence of an interior solution for data z implies that the relation 

T(a,z) = o (2.17) 

holds. At a pair (ao,zo) for which F(w,zo)  = 0, the implicit function theorem as- 
serts that if the Frechet partial derivatives, D,T(*, 20 )  and D,.F(w, ZO), of 3 exist and 
D,.F(q, ZO)-' exists, then z t) a(z) is determined as a Frechet differentiable function in 
a neighborhood of zo , [ 11. 

d 
(2.18) -Go$b)a']  + G(a)[(D,?r)a'] = -G(a')n + @2[(Dc)a']. 

and initial condition 
ID,n)a'](T) = 0. 
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Defining the N x M matrix P( t )  with columns 

for k=1, ..., M, and the N x M matrix 

we may respresent Dan by the formula 

In addition, it easy to see that for D,n = D,.rr(a, z) 

(2.19) 
d 

- G o , [ ( ~ , ~ ) z ' ]  + G(a)[(Dzn)z'] = -@*z'. 

[ (Dzx)z ' ] (T)  = 07 

and . 

[ (D,T)Z ' ]  = - ~ ( t  - T)G; '@*z ' (T)~T.  . LT 
It follows from equations (2.6) and (2.13) that 

T 
DO&(a, z)a' = 1 {[D,.rr(a, z)a']*G(k)c(a) i- n(, ~)*G(~)(Dcfa)a ' ] )d t  

and 
T 

D,Xk(a, z)z' = [D,r(a, ~ ) z ' ]*G(~)c (a )d t .  

Hence, we obtain the expressions 

rT 
DaXk(a ,  z)a' = -[j0 (c(a)(t)*G(')(P(t) + D(t ) )  + n(a, ~)( t )G(~) j30(a)( t ) )d t ]a '  

and 

D,Xk(a7 z)z' = lT[L7 c(a)(t)*Gck)S(t - ~ ) d t G ; ' @ * ] z ' ( ~ ) d ~ .  

Setting 

X(a , z ) ( t )  = - Go'@*, 



t 

we may write 
P T  

D,F(a, z)z' = X(a, z)(t)z'(t)dt 
/O 

Furthermore, define the MxN matrices IC1 and K2 in which the k-th rows are given by 

T 
IC1 = 1 c(a)(t)'G(k)(P(t) + D(t))dt  

and 
T 

X2 = 1 7i(a,z)(t)G(k)Do(a)(t)dt, 
respectively, and set 

K: = IC1 + K2. 

From (2.16), we see that 

and from the implicit function theorem [l] we have the following. 

Proposition 2.3. Suppose that F ( q ,  zo) = 0. If matrix H + 3€!2 + K: is invertible, 
then there is a neighborhood ,4f(zo) such that z a(z) is defined as a function on Ar(zo), 
and 

It is also of interest to calculate the second derivatives of 1: t+ a(z). The following is 
a consequence of a straight forward calculation. 

Lemma 2.4. The second derivatives of c and T satisfy the following equations. 

d 
( 2 . 2 1 ) ( i )  Go ,[(D2c)(a', a')] + G(a)[(D2c)(a', a')] = -2G(a')[(Dc)a', (Dc)a'] 



. 

d 
-Go I (  .Dazr) (a’, Z’ )] + G( a) [ ( Darr )  (a‘, z’ )] = -G( a’) [ (D,r)z‘] , (2.2 1) (iii) 

[(D2,4(a’, z’)J(T) = 0 

and 

2.21(iv) Dzr7r = 0. 

We note from (2.13) that the second Frechet derivative of xk is given by 

[DZz7r( a, z) (z‘ , z‘)]* G(k)  c( a)dt 
= 1’ D z z  x k (  a, z) (2’ 2’) 

Hence, by (2.21)(iv) 
Dzzxk(a,z) = 0 

from (2.16), we see that 
Dzz3(a,z) = 0. 

Other second partial derivatives of 3 may be calculated similarly. From (2.16) and (2.17), 
we see that 

Proposition 2.5. The second derivative of z c) a(z) with respect to z is given by 

D*u(z)(z’,  2’) = -(E + *2 + X)-’{DaaF(a, z)(Da(z)z’, Da(z)z’) + 
+ 2DZ,3(a, z ) (z ! ,  Du(z)z ’ ) } .  

Remark 2.6. Extending the above argument, it easy to see that ifH+!P2 +K: is invertible, 
then any derivative of a exists. 

Suppose that z’ is such that Da(z)z‘ = 0. That is, denoting the null space of Da(z) 
by N ( D a ( z ) ) ,  suppose that 

z‘ E N(Da(z ) ) .  

From Propositions 2.3 and 2.6, we have the following. 

CoroIlary 2.7. Ifz’ is such that z’ E N(Du(z ) ) ,  then . 

for any n. For such vectors z’ we see that 

a(z + z’) = a(z). 
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Remark 2.8. It follows that the estimated coefficient a(z)  is insensitive to any perturba- 
tion (no matter how large) z' f N(Da(z)) .  Note this is a consequence of the fact that the 
fit-to-data functional is quadratic in the data z. 

We next examine sufficient conditions underwhich the matrix H + \E2 +K: is invertible. 
To this end we introduce the following assumptions. Recalling that GO,G(U),G(~) for 
k = 1, ..., M are NxN symmetric matrices and that H and g 2  are MxM symmetric matrices, 
we suppose there positive real numbers p7 PO, vo, p l ,  and p such that 

(2 .22 ) ( i )  H + 4 2 L P I  

(2.22)  (ii) PI I 2 Go 2 po I 

( 2  2 2 )  (iii) 

and for any k = 1, ..., M 

( 2 . 2 2 ) ( i v )  

where I represents the identity m 

G(k)  2 pI 

trix on RN or RM which ever is 
straight forward estimates, we obtain 

1 
IIc(a)l/L2(0,T,RN) 5 -lIF11L2(0,T,RN) VO 

From 



we have 

and 

Proposition 2.9. If 

then H + 9 2  + X: is invertible. 
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